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Abstract Summer streamflow is an important water resource during the dry summers in the western
United States, but the sensitivity of summer minimum streamflow (low flow) to antecedent winter
precipitation as compared with summer evaporative demand has not been quantified for the region. We
estimate climatic elasticity of low flow (percent change in low flow divided by percent change in climatic
forcing variable) with respect to annual maximum snow water equivalent (ESWE), winter precipitation (EPPT),
and summer potential evapotranspiration (EPET) for 110 unmanaged headwater catchments in the maritime
western U.S. mountains. We find that |EPET| is larger than |EPPT| and |ESWE| in every catchment studied and
is 4–5 times larger than both, on average. Spatial variations in E are dominated by three patterns. First, |EPPT|,
|ESWE|, and |EPET| are largest and most variable among semiarid catchments and decrease nonlinearly with
increasing values of the humidity index (the ratio of annual precipitation to annual evaporative demand).
Second, |EPPT| and |EPET| are lower in snow-dominated catchments than in rain-dominated catchments,
suggesting that snow cover reduces the proportional response of low flows to climatic variability. Third, |EPPT|,
|ESWE|, and |EPET| are lower in slow-draining catchments than in fast-draining catchments, for which
baseflow recession storage coefficients are used to represent the rate at which catchment water storage is
translated into streamflow. Our results provide the first comparison of summer low-flow elasticity to PPT
versus PET and its spatial variation in the maritime western U.S. mountains.

Plain Language Summary The western U.S. climate is characterized by cool, wet winters and warm,
dry summers. Streamflow provides a critical water resource during the dry summers here. The minimum
streamflow (low flow) usually occurs in September or October, several months after the mountain snowpack
has melted. The magnitude of the low flow sets a lower bound on water supply, especially in systems without
surface water storage. However, it is not clear whether the magnitude of the low flow is more strongly
controlled by how cold and wet the previous winter was versus how warm and dry the summer was. We
quantified the percent change in low flows per 1% change in winter precipitation and summer evaporative
demand. We found that percent changes in low flows are 4 to 5 times larger per 1% change in summer
evaporative demand than winter precipitation. However, year-to-year variation in evaporative demand is
small so the year-to-year variation in low flows is more strongly associated with year-to-year variation in
winter precipitation. Our results suggest that low flows are highly vulnerable to small changes in evaporative
demand, but more work is needed to understand expected changes in evaporation in a warming climate.

1. Introduction

Summer streamflow provides water for irrigated agriculture, power generation, municipal and industrial
water supply, in-stream ecological habitat, and many other important societal and ecological needs during
the dry Mediterranean summers in the maritime western United States (Arismendi et al., 2013; Hamlet
et al., 2002; Jaeger et al., 2017; Mantua et al., 2010). The annual minimum streamflow (hereafter, low flow)
usually occurs during late summer (September to October) here, following cessation of the spring snowmelt
and summer streamflow recession (Kormos et al., 2016). Notwithstanding changes in catchment water
storage, the annual streamflow magnitude reflects a balance between the annual precipitation supply and
the evaporative energy demand (Milly, 1994), which in the maritime western United States are concentrated
during winter and summer, respectively. However, the relative control of antecedent winter precipitation
supply versus summer evaporative energy demand on summer low flows appears not to have been pre-
viously quantified for the region.
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Interannual climate variability in the region is characterized by multiyear periods of below-average precipita-
tion and persistent hydrologic drought (Dettinger, 2013; Van Loon, 2015). Economic consequences of drought
are often severe here, especially when exacerbated by above-average air temperatures that reduce winter
snow accumulation and, consequently, late summer water supply for irrigation and other economic activity
(Howitt et al., 2015; Jaeger et al., 2017; Shukla et al., 2015). Moreover, the magnitude of the annual and sum-
mer low flow has declined since at least the middle twentieth century at nearly every unimpaired headwater
stream gage in the Pacific Northwest and the Sierra Nevada mountains of California, coincident with a period
of declining low- and middle-elevation mountain snowpack and annual precipitation (Jung et al., 2013;
Kormos et al., 2016; Lins & Slack, 1999; Luce et al., 2013; Mote et al., 2018; Rice et al., 2015). Continued declines
in mountain snowpack are expected as the regional air temperature continues to warm, whereas the magni-
tude and direction of expected precipitation changes are uncertain owing in part to the wide spread in future
precipitation predicted by global and regional climate models (Gergel et al., 2017). Understanding the sensi-
tivity of summer streamflow to different sources of climatic variability is therefore important, both for inter-
preting natural streamflow variations and for anticipating water scarcity in a changing climate.

Streamflow elasticity is one metric to quantify the climatic sensitivity of streamflow (Dooge, 1992; Schaake,
1990). Streamflow elasticity is defined as the fractional change in streamflow for a fractional change in a prox-
imate forcing variable, for example, precipitation:

Ε P;Qð Þ ¼ dQ=Q
dP=P

¼ dQ
dP

P
Q

(1)

where P and Q are precipitation and streamflow, respectively, and Ε is usually expressed as a percent change
in Q per 1% change in P. Streamflow elasticity can be estimated empirically from historical time series of nat-
ural variations in P and Q (e.g., Sankarasubramanian et al., 2001) or by applying a synthetic dP and simulating
dQ with a process-based hydrologic model (e.g., Vano et al., 2012).

Previous studies of streamflow elasticity to climate have generally focused on the elasticity of streamflow to
precipitation as compared with air temperature (Milly et al., 2018). For the maritime western U.S. region, the
magnitude of both annual streamflow (Jeton et al., 1996; Risbey & Entekhabi, 1996) and summer low flow
(Kormos et al., 2016) appears to be more sensitive to precipitation magnitude than to air temperature. Air
temperature has been invoked as a proxy for snowmelt timing and for its physical connection to evapotran-
spiration (Jeton et al., 1996; Kormos et al., 2016; Milly et al., 2018; Risbey & Entekhabi, 1996). Potential evapo-
transpiration is more directly related to the annual water balance than air temperature (Milly et al., 2018), but
to our knowledge streamflow elasticity to potential evapotranspiration has not been quantified at the wes-
tern U.S. regional scale for either annual or summer low flows. Consequently, the relative sensitivity of sum-
mer low flows to antecedent winter precipitation magnitude (moisture supply) versus summer potential
evapotranspiration (moisture demand) is unknown.

Understanding spatial variations in streamflow sensitivity to climate is important for anticipating water scar-
city at the local scale, especially in the diverse climatic and physiographic landscape of the western United
States (Safeeq et al., 2014; Tague & Dugger, 2010). Three factors have been identified as important mediators
of spatial variability of both annual and summer streamflow sensitivity to climate elsewhere or separately: (1)
the humidity index P/PET, which reflects the degree to which the mean annual catchment water balance is
energy limited (P/PET> 1) versus water limited (P/PET< 1); (2) the degree to which seasonal moisture supply
is in phase with seasonal energy demand, for which the fraction of annual precipitation that falls as snow ver-
sus rain and/or the timing of snowmelt may be proxies; and (3) differences in the capacity of catchments to
store water, and the rate at which catchment water storage is translated into streamflow (i.e. catchment-scale
streamflow recession rates, hereafter drainage rates hereafter drainage rates), which reflects physiographic
factors such as soil and rock porosity and permeability as well as catchment size, shape, and slope
(Berghuijs et al., 2014; Harman et al., 2011; Milly, 1994; Sankarasubramanian et al., 2001; Tague & Grant,
2009; Wolock & McCabe, 1999). Differences in vegetation and land use/land cover change are also identified
as important mediators of streamflow elasticity but are not examined here.

In the context of annual streamflow elasticity, water-limited (i.e., arid and semiarid) catchments are more
sensitive to climatic variability than energy-limited (i.e., humid) catchments (Berghuijs et al., 2017). In addi-
tion, catchments where seasonal moisture supply is in phase with seasonal energy demand, or where
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rainfall is a larger portion of annual precipitation than snowfall, are generally more sensitive to climatic varia-
bility (Milly, 1994; Sankarasubramanian et al., 2001). Drainage rates are known to mediate the climatic sensi-
tivity of summer streamflow in the western United States (Safeeq et al., 2013, 2014; Tague & Grant, 2009), but
to our knowledge the relationship between drainage rates and summer streamflow elasticity has not been
quantified (other definitions of sensitivity were used). In most cases, these factors have been examined in
the context of case studies, often hydrologic model based, or for a small number of catchments (e.g.,
Godsey et al., 2014; Harman et al., 2011; Jefferson et al., 2008; Markovich et al., 2016; Tague & Grant, 2009),
with some exceptions (e.g., Safeeq et al., 2013). To our knowledge no study has examined how each of the
three aforementioned factors mediate summer low-flow elasticity at the western U.S. regional scale.
Consequently, the relative influence of these factors on spatial variations in summer low-flow elasticity is
not currently known. Such understanding should provide useful context for case studies and process-based
experiments, as well as provide water managers and scientists with a consistent and comprehensive view of
summer low-flow elasticity to climate variability across the heterogeneous landscape of the maritime wes-
tern United States.

Our goal here is to estimate the sensitivity of summer low-flow magnitude to variability in winter precipita-
tion versus summer evaporative demand in maritime western U.S. mountain catchments. The two research
questions that we address are (1) what is the sensitivity of summer minimum streamflow magnitude to
annual maximum snow water equivalent (SWEMAX), cumulative winter precipitation, and cumulative summer
evaporative demand? and (2) how do climatic factors such as the humidity index (P/PET) and the ratio of
SWEMAX to annual precipitation (SWE/P) compare to drainage rates as mediators of spatial differences in these
elasticities? We estimate summer low-flow elasticities for 110 unmanaged headwater catchments across a
maritime latitudinal transect of the coastal western United States and show how they vary with latitude, P/
PET, and SWE/P. Then we compare summer low-flow elasticities to baseflow recession storage coefficients,
which we use as proxies for drainage rates or the rate at which seasonal changes in catchment water storage
are translated into streamflow. To clarify the relative influence of the SWE/P ratio versus drainage rates on
summer low-flow elasticities, we categorize catchments into rain- versus snow-dominated precipitation
regimes and fast- versus slow-draining hydrologic regimes (Figure 1). Finally, we discuss the implications of
our findings for anticipating the response of summer streamflow to climate change in the maritime western
United States.

2. Study Area and Data

We restricted our analysis to catchments located in the maritime mountain ranges of California, Oregon, and
Washington states, United States (Figure 2). The study catchments span a range of climatic conditions, from
the semiarid California coastal mountains and southern Sierra Nevada to the humid, snow-dominated
Cascades in northern Washington. More than two thirds of the annual precipitation in the region occurs
during winter (which we define as November–March), although the ratio of cumulative winter precipitation
to cumulative annual precipitation decreases markedly from south to north (Figure 2).

2.1. Streamflow Data

We selected candidate streamflow gages from the U.S. Geological Survey’s (USGS’s) Geospatial Attributes of
Gages for Evaluating Streamflow, version II (GAGES-II) reference database (Falcone, 2011; Falcone et al., 2010).
Reference gages are considered to be relatively unimpaired by anthropogenic activity and suitable for stu-
dies of natural streamflow variability and change. We obtained daily streamflow data for all reference gages
from the USGS Surface-Water Data for the Nation online database (waterdata.usgs.gov/nwis/sw). We
restricted our analysis to the 1948–2015 time period and excluded gages with <30 years of data during this
period. To check the influence of missing values, we repeated our analysis using gages with maximum
10 years missing data and found no material difference in results; therefore, we retained the 30-year thresh-
old to maintain a robust sample size and for consistency with earlier studies (Fritze et al., 2011; Safeeq et al.,
2013; Stewart et al., 2005). We excluded gages with remarks in the USGS Annual Water Data Report (wdr.
water.usgs.gov) noting flow regulation or upstream water diversions that may alter low flows due to factors
unrelated to natural climate variability. We then plotted each record of daily streamflow and excluded gages
with evidence of step shifts, discontinuities, unrealistic constant flow values, and outliers on log flow versus
time plots, with particular attention to low-flow periods. We excluded one catchment with glacial headwaters
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(station 12182500) that passed screening to avoid the influence of glacier
melt on its low flows. Our screening process resulted in the 110 gages
shown in Figure 2 (also see the supporting information).

Following Godsey et al. (2014), we defined the summer minimum stream-
flow (QMIN) as the minimum of the 15-day running median streamflow
between 1 June and 31 October of each calendar year. We chose this per-
iod to avoid detecting annual minimum flows that occasionally occur dur-
ing cold dry periods between November and May in our study area
(Kormos et al., 2016). To this end, QMIN is representative of the summer
dry season, which in our study area extends through October prior to
onset of winter rains in November (Kormos et al., 2016). The time series
of QMIN for each gage that resulted from this process formed the basis
for our subsequent analysis.

2.2. Climate Data and Related Metrics

We extracted gridded fields of daily precipitation, SWE, and climatic vari-
ables needed to compute Penman-Monteith reference crop evapotran-
spiration for each catchment from the Livneh et al. (2015) 1/16° data
set. The Livneh et al. (2015) gridded precipitation data were interpolated
from point observations at National Climatic Data Center Cooperative
Observer stations and scaled to match the Parameter-Elevation
Regressions on Independent Slopes Model 1981–2010 precipitation cli-
matology. The gridded SWE fields are model output from the variable
infiltration capacity hydrologic model forced with other fields (including
precipitation and air temperature) in the Livneh et al. (2015) data set.
The variable infiltration capacity model (Liang et al., 1994) simulates
the land-surface energy balance and water balance at 1/16° horizontal
grid spacing and 3-hourly time step (aggregated to daily) and has been
used in previous analyses within our study area (e.g., Mao et al., 2015;
Mote et al., 2018). We computed reference evapotranspiration as a
surrogate for potential evapotranspiration following Allen et al. (1998).
Variables needed to compute reference evapotranspiration include
2-m surface air temperature, net radiation, vapor pressure deficit, and
wind speed. The reference crop was short grass with a prescribed sur-
face resistance of 70 s/m (Allen et al., 1998).

Figure 1. Ensemble mean hydrographs of basin mean daily streamflow for all catchments in four different hydroclimatic
categories that demonstrate the range of hydrograph characteristics in the study region: rain-dominated catchments
that are also slow draining (rain, slow), rain-dominated catchments that are also fast draining (rain, fast), snow-dominated
catchments that are also slow draining (snow, slow), and snow-dominated catchments that are also fast draining (snow,
fast; adapted from Safeeq et al., 2013). Top axis shows mean annual precipitation and potential evapotranspiration con-
centrated during winter and summer, respectively, averaged across all study catchments.

Figure 2. The study catchments and their ratio of cumulative winter
(November toMarch) precipitation to cumulative annual precipitation (PW/P).
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To improve sampling resolution near catchment edges, we resampled the 1/16° gridded data to 1/160° using
bilinear interpolation. We computed catchment mean area-weighted daily records of precipitation, SWE, and
potential evapotranspiration from the resampled data, fromwhich we computed annual time series of cumu-
lative 1 November to 31 March (winter) precipitation (PPT), annual maximum SWE (SWEMAX), and cumulative
1 June to 30 September (summer) potential evapotranspiration (PET). We used these records to compute the
ratio of cumulative annual precipitation to cumulative annual potential evapotranspiration, that is, the
humidity index (P/PET; Budyko, 1974) and the ratio of annual maximum SWE to cumulative annual precipita-
tion (SWE/P). These metrics were computed for each catchment and each water year and then averaged
across all years to produce one representative value for each catchment.

3. Methods
3.1. Elasticity Analysis

We estimated QMIN sensitivity to SWEMAX, PPT, and PET using elasticity analysis (Schaake, 1990). Streamflow
elasticity is the fractional change in streamflow for a given fractional change in precipitation or similar climate
metric. Streamflow elasticity can be estimated from empirical relationships between historical streamflow
and climate observations (for which Sankarasubramanian et al., 2001, describe several estimators) and from
process-based hydrologic model simulations (as in Vano et al., 2012). Bothmethods have advantages and dis-
advantages. For example, interannual carryover (persistence) is usually ignored in statistical models, whereas
model structural error is an issue for hydrologic models. Here we used observation-based estimators to avoid
hydrologic model error.

We estimated QMIN elasticity using ordinary least squares log-log linear regression between annual time ser-
ies of QMIN and SWEMAX, PPT, and PET (Jenicek et al., 2016). The method is equivalent to the bivariate para-
metric estimator described by Sankarasubramanian et al. (2001). We computed elasticity (E) as the inverse
transformed regression slope as follows:

E ¼ 1� exp a�βð Þ; (2)

where a = log (1 + Δ), Δ = 1%, and β is the regression slope. Setting Δ = 1%means E is interpreted as the per-
cent change in QMIN per 1% change in SWEMAX, PPT, and PET. We refer hereafter to these elasticities as ESWE,
EPPT, and EPET. For ordinary least squares regression, the slope is

β ¼ rX;Y
SY
SX

; (3)

where rX, Y is the Pearson correlation coefficient for independent variable X and dependent variable Y, and SY
and SX are the sample standard deviations. Equation (3) says that the slope of a linear regression β is propor-
tional to the correlation between two variables scaled by the ratio of their standard deviations (here interann-
ual climate variability). Previous studies have used β as a direct estimate of E (e.g., Godsey et al., 2014). Owing
to our use of log-log regression, we estimated Ewith equation (2), but for the range of a * β values considered
in this study, E~β and hence E∼rX;Y SY

SX
.

We used equation (3) to determine the relative influence of rX, Y and SY/SX on E. This is important when inter-
preting differences between ESWE, EPPT, and EPET or between categories of catchments within the ESWE, EPPT,
and EPET populations. For example, we categorize catchments based on precipitation regime (rain dominated
versus snow dominated), as described in section 3.3. Differences in E between these categories are related to
differences in rX, Y and SY/SX that are not evident from E alone. Similarly, we show that PET has very small inter-
annual variability compared to PPT and QMIN (i.e., SPET ≪ SPPT). It follows that for similar |r|, SQMIN=SPET≫SQMIN=

SPPT and thus |EPET| ≫ |EPPT|. While this result is expected, it demonstrates that the magnitude of |E| is highly
sensitive to the magnitude of historic variability in the independent climatic variable of interest (e.g., PET ver-
sus PPT). Therefore, the magnitude of expected future change in the independent variable must be consid-
ered when interpreting E in terms of vulnerability to climate change.

Prior work has shown poor goodness of fit can lead to unreliable elasticity estimates (Tsai, 2017). Because one
goal of this study is to infer the influence of physical processes on spatial variations in E, we exclude elastici-
ties with p values >0.05 to avoid biasing these interpretations. Where applicable, we report ensemble mean
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and median values for the entire set of 110 study catchments along with ensemble mean and median values
for the set of statistically significant elasticities. We used the False Discovery Rate method (Khaliq et al., 2009)
to assess field significance of the elasticity regressions at 95% confidence, which detects the discovery of sta-
tistically significant correlation at the individual site (i.e., local) significance level by chance alone.

3.2. Baseflow Recession Analysis

We used baseflow recession storage coefficients as proxies for drainage rates, or the rate at which seasonal
changes in catchment water storage are translated into streamflow (Safeeq et al., 2013, 2014; Tague & Grant,
2009). We used baseflow recession analysis (Tallaksen, 1995) to estimate the storage-discharge relationship
for each stream gage record:

Q ¼ kSb; (4)

where Q is the rate of streamflow out of the catchment [L T�1], S is storage in catchment aquifers [L], k is the
characteristic time scale of the baseflow recession process [L1-b Tb-2], and b is a dimensionless constant. For
baseflow conditions where recharge (e.g., precipitation or snowmelt) to the catchment aquifers is negligible,
dS/dt = � Q and hence

� dQ
dt

¼ kQb: (5)

Representing the baseflow recession process in the form of equation (5) is advantageous because the linear-
ized solution (b = 1) to the Boussinesq equation for drainage of an unconfined horizontal aquifer can be
expressed in the same form, where the coefficient k is a function of the aquifer hydraulic conductivity, por-
osity, and geometry (Brutsaert & Nieber, 1977). Hence, k reflects the intrinsic geologically mediated hydraulic
properties of the upstream catchment aquifers. The inverse 1/k is the characteristic e-folding time scale [T for
b = 1] of the baseflow recession process and is commonly referred to as the storage coefficient (Brutsaert,
2008, 2010). Storage coefficients (hereafter K) can be used to estimate changes in groundwater storage from
Q (Brutsaert, 2008, 2010) or, as in this study, to infer the extent to which Q is influenced by seasonal changes
in groundwater storage (Tague & Grant, 2004).

We estimated K for each catchment using the dQ/dt versus Qmethod (Brutsaert & Nieber, 1977). The method
consists of plotting |dQ/dt| versus Q on log-log scale and fitting a least squares solution with slope b = 1 and
intercept k (equation (5) in log-space) to the lower fifth percentile of values. The lower fifth percentile is
selected under the assumption that these values represent the best estimate of baseflow, that is, flow not
influenced by external inputs and representative of aquifer contributions to streamflow (Brutsaert &
Nieber, 1977). Prior to fitting, we removed all Q on days with precipitation >0 and for 3 days following, all
Q on days with dQ/dt > 0, and all Q between the date of SWEMAX and 15 August (as in Brutsaert & Nieber,
1977; Safeeq et al., 2013). The latter criterion was used to remove the influence of snowmelt recharge. We
apply a variable dt to account for artifacts associated with the precision of the discharge measurements fol-
lowing Rupp and Selker (2006a) and Sánchez-Murillo et al. (2015).

We acknowledge that the linear assumption (b = 1) is problematic where slope is an important driver of flow
(Rupp & Selker, 2006b), such as the montane catchments analyzed here. Empirical studies also suggest that b
varies spatially with catchment climatic or physiographic characteristics (Berghuijs et al., 2016; Ye et al., 2014).
However, for our purposes, K is used to indicate whether the baseflow recession process is weakly versus
strongly controlled by seasonal changes in deep groundwater storage versus shallow subsurface flow
(Safeeq et al., 2013; Tague & Grant, 2004) and is not used to estimate hydraulic properties of the
catchment aquifers.

3.3. Catchment Classifications

To summarize differences in ESWE, EPPT, and EPET based on differences in seasonal snow accumulation versus
drainage rates, we categorized the catchments into precipitation and hydrologic regimes. The precipitation
regimes are rain dominated (SWE/P < 20%) and snow dominated (SWE/P ≥ 20%). We tested different
rain/snow threshold values including the mean and median of the SWE/P distribution of our study catch-
ments and higher thresholds (SWE/P ≥ 30%). We found no material effect on our results other than to
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skew the sample size toward the rain-dominated category; therefore, we selected 20% to broadly distinguish
between rain- and snow-dominated catchments.

The hydrologic regimes are fast draining (K< 45 days) and slow draining (K ≥ 45 days). We chose K = 45 days
based on the global analysis of K values reported by Brutsaert (2008, 2010). As with the SWE/P threshold, our
results are robust to different threshold K values including the mean andmedian of the K value distribution of
our study catchments, which we show are nearly identical to those of Brutsaert (2008, 2010). We emphasize
that fast draining and slow draining are heuristics meant to describe catchments where the baseflow reces-
sion process is weakly versus strongly controlled by seasonal changes in deep groundwater storage versus
shallow subsurface flow processes (Safeeq et al., 2013; Tague & Grant, 2004, 2009). We used these catchment
classifications to assess differences in ESWE, EPPT, and EPET between these distinct climatic and hydrologic
regimes. In addition to the categorical comparisons, we used the nonparametric Spearman rank correlation
(ρ) to assess relationships between E values and K values, and between E values and SWE/P ratios.

4. Results

Our analysis is intended to determine the sensitivity of summer low flows to winter precipitation as con-
trasted with summer evaporative demand and how climatic versus hydrologic factors mediate these sensitiv-
ities. We first show the spatial structure of summer low-flow elasticity (E) across our maritime latitudinal
transect and examine how E varies with (1) latitude and the humidity index, (2) snow accumulation and snow-
melt timing, and (3) drainage rates.

4.1. Goodness of Fit

We find locally significant (p ≤ 0.05) ESWE, EPPT, and EPET values in 61, 69, and 93 of the 110 study catchments,
respectively. Of these locally significant values, 61, 67, and 92 are field significant at 95% confidence. A chi-
square test suggests that the ESWE values are normally distributed; however, the EPPT and EPET distributions
are positively and negatively skewed, respectively. The median ESWE, EPPT, and EPET across the locally signifi-
cant values are 0.30%, 0.50%, and�2.4%, respectively. When compared across all 110 study catchments (i.e.,
retaining E values without significant correlation), the median ESWE, EPPT, and EPET are 0.16%, 0.35%, and
�2.2%, respectively. In total, 49 catchments were classified as snow dominated (mean SWE/P ≥ 20%), of
which we find 40, 40, and 41 with locally significant ESWE, EPPT, and EPET values, respectively. When compared
across these snow-dominated catchments, the median ESWE, EPPT, and EPET are 0.43%, 0.50%, and �2.1%,
respectively. Together, these median values suggest that QMIN is ~4–5 times more sensitive to PET than both
PPT and SWE. Hereafter, we report results for the set of locally significant regressions.

The goodness of fit (R2) ranges from 0.06 to 0.82 (Figure 3), with mean R2 of 0.30, 0.33, and 0.30, respectively,
suggesting that QMIN shares a nearly identical weighting of underlying causal factors with SWE, PPT, and PET,
taken separately. This similarity in R2 (and hence r) between variables suggests that, on average, differences
between ESWE, EPPT, and EPET are driven by differences in the ratio of interannual QMIN variability to climatic
variability (i.e., SY/SX, equation (2)). Catchments with the poorest goodness of fit tend to be those with the
smallest |E| values. For example, compare the R2 and E values of the best fit regressions (Figures 3a–3c) to
the worst fit regressions (Figures 3d–3f).

4.2. Latitudinal Variation in the Magnitude and Timing of Moisture Supply Versus Demand

Absolute E values are negatively correlated with latitude for catchments located south of ~40°N (near the bor-
der between California and Oregon; Figure 4). The largest |E| values are found in the snow-dominated Sierra
Nevada (~36–39°N) and rain-dominated coastal California catchments, and the smallest |E| values in the
Oregon and Washington Cascades and coastal catchments of the Pacific Northwest. We find a similar pattern
of decreasing R2 with increasing latitude for ESWE and EPPT, suggesting that correlation between QMIN and
winter precipitation weakens with increasing latitude from California to the Pacific Northwest. Conversely,
R2 increases with latitude for EPET, suggesting a stronger relationship between QMIN and summer evaporative
demand in the Pacific Northwest.

The pattern of decreasing |E| with increasing latitude corresponds with an increase in the humidity index P/
PET with latitude in the study area (Figure 5). South of ~40°N in the Sierra Nevada and coastal California
mountains, P/PET is close to or <1, indicating primarily water-limited conditions on annual time scales. In
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Figure 3. Examples of (a–c) best fit and (d–f) worst fit regressions for ESWE, EPPT, and EPET. The R2 and E value (%) are shown for each regression.

Figure 4. (a) ESWE, (b) EPPT, and (c) EPET for the set of 110 study catchments (excluding those withmean annual SWE/P< 5% for ESWE). Circles are color coded by the E
value of each catchment. Insets show relationships between R2 and latitude for the ESWE, EPPT, and EPET regressions.
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this region, small increases in moisture supply P relative to demand PET are associated with large decreases in
|ESWE|, |EPPT|, and |EPET|. North of ~40°N in the Cascades and coastal mountains of the Pacific Northwest, P/PET
is generally >1, indicating primarily energy-limited conditions and an annual surplus of P relative to PET. |E|
values in this region are consistently lower, more homogeneous, and do not vary systematically with P/PET. In
both regions, the increase in P/PET with latitude is driven by both an increase in P and a decrease in PET with
latitude, but P increases at approximately twice the rate of decrease in PET. Mean annual P increases from
~500 to ~2,800 mm/year at the southern and northern ends of the transect, respectively, whereas mean
annual PET decreases from ~1,400 to ~600 mm/year, respectively. Consequently, the variability in E with
latitude shown in Figure 4 is associated with variability in P more than in PET.

In addition to indices of mean annual water supply and demand such as the humidity index, previous work
has indicated enhanced climatic sensitivity of annual streamflow for catchments where seasonal moisture
supply is in phase with seasonal energy demand (Milly, 1994; Sankarasubramanian et al., 2001). Given the sea-
sonal nature of summer low flows, this leads to an expectation that summer low-flow elasticity depends on
seasonal moisture supply and energy demand phasing. To quantify phasing, we compute the centers of tim-
ing of annual precipitation (CTPPT) and potential evapotranspiration (CTPET), which are the day of year on
which half of the annual precipitation and potential evapotranspiration have occurred, respectively. We find
that CTPPT is relatively invariant across the latitudinal transect, increasing by 6.5 days on average from south
to north, with low variation (μ= 7 February ± 5.5 days), whereas CTPET increases by 27 days on average from
south to north with more variation (μ= 4 June ± 8.8 days). Moisture supply is therefore increasingly out of
phase with energy demand with increasing latitude, driven by later dates of CTPET. Consequently, the varia-
bility in E with latitude shown in Figure 4 is associated with variability in CTPET more than CTPPT.

Together, these patterns demonstrate that regional-scale differences in QMIN elasticity to climatic variability
are associated with the degree to which moisture supply meets or exceeds energy demand (P/PET) as well as
the degree to which moisture supply is in phase with energy demand. In the humid Pacific Northwest, where
moisture supply exceeds (and is more out of phase with) energy demand, QMIN elasticity to winter and sum-
mer climate variability is lower. In California, energy demand generally exceeds (and is more in phase with)
moisture supply, and QMIN elasticity to both winter and summer climate variability is substantially larger.

4.3. The Role of Snow Accumulation and Snowmelt Timing

Previous studies have identified spatial differences in the magnitude of snow accumulation and snowmelt
timing as key drivers of summer streamflow sensitivity in the western United States (Fritze et al., 2011;
Stewart et al., 2005). Here we test the relationship between SWE/P ratios and E, highlighting differences in this
relationship between the northern (primarily humid) and southern (primarily semiarid) portions of our study
area. The SWE/P ratio covaries with mean annual air temperature, both for catchments south of 40°N
(r = �0.94, p < 10�12) and north of 40°N (r = �0.92, p < 10�35). Unlike the strong gradient in the humidity
index from south to north along our transect, the range of mean annual air temperatures is nearly identical
among catchments in the semiarid California mountains as compared with the humid Pacific Northwest
mountains (~ �3 to 11 °C, not shown). The similar range of air temperature variability in both regions

Figure 5. (a) ESWE, (b) EPPT, and (c) EPET versus the humidity index P/PET, for catchments with locally significant (p ≤ 0.05)
elasticity regressions. Symbols are color coded by the latitude of the catchment centroids. The vertical dashed line at P/
PET = 1 demarcates energy-limited conditions to the right of the dashed line from water-limited conditions to the left.
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drives a similar range in SWE/P ratios, from rain-dominated catchments with SWE/P = 0 to snow-dominated
catchments with SWE/P ratios approaching 90%.

We find that an increase in the SWE/P ratio is associated with reduced |EPPT| and |EPET| values in both California
and the Pacific Northwest (Figures 6b and 6c), suggesting the proportional response of QMIN to climatic varia-
bility is lower in colder, snow-dominated catchments. Given the tight relationship between mean annual air
temperatures and SWE/P ratios, relationships between E values and both elevation and air temperature mir-
ror those with SWE/P (not shown). Among catchments in the semiarid California mountains, the SWE/P ratio
mediates both EPPT and EPET, with a similar relative reduction in the magnitude of |E| values and similar cor-
relation for both variables (cf. Figure 6b to Figure 6c dashed lines). For catchments in the humid Pacific
Northwest, the SWE/P ratio mediates EPET but not EPPT (cf. Figure 6b to Figure 6c dotted lines). In both regions,
the reduction in |EPPT| and |EPET| values is most pronounced among catchments with SWE/P > ~30%.

Conversely, we find |ESWE| values increase with larger SWE/P ratios, in both California and the Pacific
Northwest (Figure 6a). Whereas this means warmer catchments appear less sensitive to changes in SWE, this
result fundamentally reflects the weaker correlation between QMIN and SWE in warm, low-elevation catch-
ments where SWE is a smaller portion of the water balance. The decrease in |ESWE| with smaller SWE/P ratios
reflects the diminishing influence of SWE on QMIN among catchments characterized by transient, mixed rain-
snow, or rain-dominated precipitation regimes, whereas the increase in |EPPT| and |EPET| with smaller SWE/P
ratios reflects the increase in QMIN variability relative to climatic variability among these catchments.

We found nearly identical relationships between E values and the mean annual date of SWEMAX (DPS) as we
found between E values and SWE/P (not shown). The SWE/P ratio and the DPS are strongly correlated in our
study region (r = 0.81, p < 10�26), suggesting that SWE/P is effectively a proxy for DPS and vice versa. In
general, we found that catchments with the latestDPS are located in the humid Pacific Northwest, where later
DPS is associated with lower |EPET| but not |EPPT|, suggesting that snow cover in this region reduces the
percent change in QMIN for a unit percent change in PET but has no effect on the percent change in QMIN

for a unit percent change in PPT. This likely reflects the effect of longer snow cover duration on energy-limited
conditions in this region. The reduction in |EPET| with larger SWE/P and later DPS suggests that snow cover
reduces the effect of late spring and early summer evaporative losses on QMIN, whereas moisture supply dur-
ing summer is less affected by the amount or duration of snow cover in the Pacific Northwest.

4.4. Elasticity in Rain- Versus Snow-Dominated Catchments

To further explore the effect of seasonal snow accumulation, we examine how the distribution of E, as well as
r and SY/SX (equation (2)), varies in rain- versus snow-dominated catchments. We examine r and SY/SX sepa-
rately to infer whether differences in E are related to the ratio of interannual QMIN variability to climatic varia-
bility (SY/SX) versus the correlation between QMIN and climatic variability (r). On average, EPPT is 0.70% in rain-
dominated catchments versus 0.55% in snow-dominated catchments (Figure 7; Table 1). The smaller EPPT in
snow-dominated catchments is explained by a dampening of interannual QMIN variability relative to climatic

Figure 6. (a) ESWE, (b) EPPT, and (c) EPET versus SWE/P for catchments with locally significant (p ≤ 0.05) elasticity regressions.
Spearman correlation coefficients ρ and slope β for dashed/dotted linear trend lines are shown for catchments located
south/north of 40°N in the (primarily semiarid) California mountains and the (primarily humid) Pacific Northwest, respectively.
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variability in these catchments. For example, correlation between QMIN and PPT is 0.56 and 0.54 for rain- and
snow-dominated catchments, respectively (cf. rQMIN;PPT , Table 1) but the ratio of interannual QMIN variability to

interannual PPT variability is 1.2 and 1.0 for rain- and snow-dominated catchments, respectively (cf. SQMIN=SPPT,
Table 1). This can be interpreted to say that, on average, the proportional response of QMIN to a unit of
variability in PPT is smaller in snow-dominated catchments than in rain-dominated catchments.

Results for EPET support the dampening effect of snow on E. On average, correlation between QMIN and PET is
�0.53 and�0.54 for rain- and snow-dominated catchments, respectively (cf. rQMIN;PET, Table 1), but the ratio of

interannual QMIN variability to interannual PET variability is 5.9 and 4.5 for rain- and snow-dominated catch-
ments, respectively (cf.SQMIN=SPET, Table 1). As with PPT, the correlation betweenQMIN and PET is relatively con-
stant across precipitation regimes, whereas interannual QMIN variability relative to interannual PET variability
is smaller in snow-dominated catchments. Relating this to section 4.3, this confirms that the reduction in
|EPPT| and |EPET| values with larger SWE/P ratios (Figures 6b and 6c) is explained by a reduction in the propor-
tional response of QMIN to climatic variability as opposed to systematic differences in correlation.

Figure 7. The distribution of (a) ESWE, (b) EPPT, and (c) EPET for all catchments with locally significant (p ≤ 0.05) elasticity
regressions within the rain- versus snow-dominated precipitation regime categories. The line inside each boxplot is the
median, the circle is the mean, the lower and upper box edges are the 25th and 75th percentiles, and the lower and upper
whiskers are the 10th and 90th percentiles, respectively.

Table 1
Summary Statistics for Summer Minimum Streamflow (QMIN) Elasticity to Annual Maximum Snow Water Equivalent (ESWE), Cumulative Winter Precipitation (EPPT), and
Cumulative Summer Potential Evapotranspiration (EPET)

Item

Rain-dominated
catchments
(α = 0.05)

Snow-dominated
catchments
(α = 0.05)

Fast-draining
catchments
(α = 0.05)

Slow-draining
catchments
(α = 0.05)

All catchments with
significant correlation

(α = 0.05) All catchments

ESWE
N (α = 0.05) 21 40 24 37 61 110
Elasticity (%) 0.21 0.45 0.41 0.34 0.37 0.22
rQMIN,SWE 0.42 0.57 0.51 0.53 0.52 0.35
SQMIN/SSWE 0.5 0.8 0.7 0.6 0.7 0.7
Elevation (m a.s.l.) 1,008 1,638 1,482 1,382 1,421 1,170

EPPT
N (α = 0.05) 29 40 36 33 69 110
Elasticity (%) 0.70 0.55 0.76 0.44 0.61 0.45
rQMIN,PPT 0.56 0.54 0.57 0.52 0.55 0.39
SQMIN/SPPT 1.2 1.0 1.4 0.9 1.1 1.2
Elevation (m a.s.l.) 1,003 1,641 1,324 1,428 1,373 1,159

EPET
N (α = 0.05) 52 41 53 40 93 110
Elasticity (%) �2.98 �2.51 �3.34 �2.02 �2.77 �2.5
rQMIN,PET �0.53 �0.54 �0.53 �0.54 �0.54 �0.48
SQMIN/SPET 5.9 4.5 6.5 3.7 5.3 5.3
Elevation (m a.s.l.) 783 1,612 1,099 1,215 1,149 1,159

Note. Where indicated, values in each category are averaged across catchments with locally significant (α = 0.05) elasticity regressions. Elevation is the catchment
median from GAGES-II. GAGES-II = Geospatial Attributes of Gages for Evaluating Streamflow, version II.
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Conversely, |ESWE| is larger and more variable in snow-dominated catchments (Figure 7). This is not surprising
because correlation between QMIN and SWEMAX is considerably lower in the rain-dominated category (cf.
rQMIN;SWE, Table 1). The smallest SWE/P ratio in the ESWE rain-dominated category is 0.04; therefore, catchments
in this category are characterized by a transient, mixed snow-rain precipitation regime. The smaller |ESWE| in
this category fundamentally reflects the weak correlation between QMIN and SWEMAX in rain-dominated
catchments and also demonstrates the reduction in correlation between QMIN and SWEMAX that results from
a climatic shift from snow- to rain-dominated conditions. In general, the smaller |ESWE| in rain-dominated
catchments reflects poor correlation between QMIN and SWEMAX in these catchments, whereas the larger
and more variable |EPPT| and |EPET| reflects the larger variability of QMIN relative to climatic variability in
rain-dominated catchments.

4.5. Elasticity in Slow- Versus Fast-Draining Catchments

In addition to spatial differences in snow accumulation and snowmelt timing, spatial differences in drainage
rates are known to mediate summer streamflow sensitivity to climate in our study area (Tague et al., 2008).
Here storage coefficients K are used to infer the influence of drainage rates on E. Across the 110 catchments,
we find K values average 48 ± 23 days (±1 standard deviation), with median 43 days and range 18–190 days.
Brutsaert (2008, 2010) found that K averaged 45 ± 14 days for a set of river basins in the central and eastern
United States, whereas Sánchez-Murillo et al. (2015) found that K averaged 33 ± 15 days for 26 catchments in
eastern Washington and Idaho. K values vary with catchment size, slope, and aridity, which may explain the
larger range and variability of K values we find (Tague & Grant, 2009). In total, 59 catchments were classified as
fast draining (K< 45 days) and 51 catchments as slow draining (K ≥ 45 days), with mean R2 of 0.69 and 0.48 for
their ∣dQ/dt∣ versus Q regressions, respectively.

We find that |E| values decrease with larger K values, suggesting that the proportional response of QMIN to
climatic variability is lower in slow-draining catchments with protracted baseflow recession (Figure 8).
Among catchments in the semiarid California mountains, there is a strong reduction in |EPPT| and |EPET| with
larger K values but no statistically significant relationship between ESWE and K. Among catchments north of

Figure 8. (a) ESWE, (b) EPPT, and (c) EPET versus storage coefficients K for catchments with locally significant (p ≤ 0.05) elas-
ticity regressions. The storage coefficient is the characteristic time scale of baseflow recession; longer K suggests larger
contributions of groundwater to baseflow. Spearman correlation coefficients ρ and slope β for dashed/dotted linear trend
lines are shown for catchments located south/north of 40°N in the (primarily semiarid) California mountains and the
(primarily humid) Pacific Northwest, respectively. The distribution of (d) ESWE, (e) EPPT, and (f) EPET for all catchments with
locally significant (p ≤ 0.05) elasticity regressions within the fast-draining (K < 45 days) and slow-draining (K ≥ 45 days)
hydrologic regime categories. The line inside each boxplot is the median, the circle is the mean, the lower and upper box
edges are the 25th and 75th percentiles, and the lower and upper whiskers are the 10th and 90th percentiles, respectively.
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40°N in the humid Pacific Northwest, K appears to mediate EPET more than EPPT (which was also found for the
snow metrics SWE/P and DPS), whereas the relationship between ESWE and K is statistically insignificant
(Figure 8a dotted line). Though correlations between ESWE and K were not found, correlations between
EPPT, EPET, and K were stronger in snow-dominated catchments (not shown). Together, these results suggest
that percent changes in QMIN relative to percent changes in PPT and PET are lower in slow-draining catch-
ments, and this dampening effect is strongest in snow-dominated catchments.

Differences in E values are stark when averaged across all catchments in the fast- and slow-draining hydro-
logic regime categories (Figures 8d–8f and Table 1). On average, |ESWE|, |EPPT|, and |EPET| are each smaller
and less variable in slow-draining catchments than in fast-draining catchments. As with precipitation regime,
differences in E across hydrologic regime are explained by differences in interannual QMIN variability relative
to climatic variability. The ratio of interannual QMIN variability to interannual variability in SWEMAX, PPT, and
PET is lower in slow-draining catchments than in fast-draining catchments for each variable, whereas correla-
tions are nearly identical (cf. r and SY/SX in slow- versus fast-draining catchments, Table 1). However, differ-
ences in E across hydrologic regime are larger than differences in E across precipitation regime. Together,
the smallest |EPPT| and |EPET| are found in slow-draining catchments that are also snow dominated, whereas
the smallest |ESWE| are found in slow-draining catchments that are also rain dominated, although this latter
effect is due to the poor correlation between QMIN and SWE in rain-dominated catchments.

Given the strong relationships between K values and E values for all variables, it is important to determine
whether K values are proxies for catchment climatic or physiographic factors. We find no statistically signifi-
cant correlation between K values and relief ratio, mean catchment slope, catchment drainage area, stream
density, stream order, catchment compactness index, or mean catchment elevation. K values were, however,
positively correlated (r = 0.59, p < 10�13) with the baseflow index metric included in the GAGES-II database.
Baseflow index is the ratio of baseflow to annual streamflow and is broadly representative of the influence of
groundwater contributions to streamflow (Wolock, 2003); therefore, we expect this metric to be positively
correlated with our K values. We find no statistically significant correlation between K values and climatic fac-
tors including mean annual runoff and mean annual PPT. K values were, however, negatively correlated with
mean annual air temperature (r = � 0.31, p < 10�3) and mean annual PET (r = � 0.27, p < 10�2) and were
positively correlated withDPS (r = 0.36, p< 10�4), SWEMAX (r = 0.28, p< 10�2) and latitude (r = 0.28, p< 10�2).
These correlations suggest that colder catchments, which have less PET, more SWE, and laterDPS, also tend to
be categorized as slow draining and also that higher latitude catchments, which tend to have smaller P/PET,
tend to be categorized as slow-draining catchments.

5. Discussion
5.1. Summer Low-Flow Elasticity to Winter Precipitation Compared to Summer Evaporative Demand

Absolute values of summer low-flow (QMIN) elasticity to summer evaporative demand (PET) are approxi-
mately 4–5 times larger than to winter precipitation (PPT) or annual maximum SWE (SWEMAX), with median
elasticities of �2.1%, 0.50%, and 0.43% for catchments where SWEMAX exceeds 20% of the annual precipi-
tation, respectively. Underlying this, we find that correlations between QMIN and SWEMAX, PPT, and PET are
nearly identical, but for every unit of variation in PET, the corresponding unit of variation in QMIN is approxi-
mately 4–5 times larger than for SWEMAX or PPT. Given the nearly identical correlations, this suggests that
variability in PET exerts a stronger control on variability in QMIN than in PPT and also that variability in PET is
small relative to variability in PPT. In addition, QMIN elasticity to climatic variability is substantially larger in
semiarid catchments than in humid catchments. These findings both support the notion that small
changes in PET or the ratio P/PET have the potential to drive large changes in QMIN and its elasticity to cli-
matic variability in the western United States, especially where evaporative demand is seasonally in phase
with moisture supply.

The implication of these findings for low flows in a changing climate depends on both the magnitude
of change in the proximate forcing variables and the magnitude of the elasticities we document. A
large change in PPT combined with a small elasticity to PPT could outweigh a small change in PET
combined with a large elasticity to PET (Tan & Gan, 2015). In addition, our elasticities may not
describe the response of low flows to changes in PPT and PET outside their historic variability. The
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assumption that increased PET leads to decreased streamflow is directly tied to the assumption that
increased PET leads to increased actual evapotranspiration. Near-term increases in net surface radiation
due to enhanced downwelling longwave radiation from a warmer atmosphere are expected to contri-
bute primarily to warming of the surface air temperature as opposed to increased actual evapotran-
spiration (Roderick et al., 2014, 2015). Estimates of actual evapotranspiration are sparse, but
historical data from the northern portion of our study region appear to support this. For example,
trends in precipitation explain the majority of variability in annual and summer streamflow trends in
the Pacific Northwest during the twentieth century, whereas trends in water-equivalent energy avail-
able for evapotranspiration are small in comparison (Jung et al., 2013; Kormos et al., 2016; Luce
et al., 2013). Kormos et al. (2016) provide a cogent discussion of these issues, arguing low flows in
the Pacific Northwest have likely not been affected by increased evapotranspiration despite an
increase in the regional air temperature and growing season evaporative demand (Abatzoglou et al.,
2013), but in principle, their arguments apply to annual not seasonal flows (Kumar et al., 2013;
Roderick et al., 2014).

The response of seasonal streamflow including summer low flows to increased evaporative demand has
received less attention. Evidence from the Sierra Nevada mountains suggests that actual evapotranspiration
may scale with evaporative demand and reduce dry season streamflow in catchments where growing season
length and spatial extent is cold limited and vegetation rooting depth has access to deeper water storage in
decomposed regolith (Bales et al., 2011; Goulden & Bales, 2014; Klos et al., 2018). This latter point is relevant to
our analysis of slow- versus fast-draining catchments. Although we find that slow-draining catchments have
lower elasticity on average and therefore appear less sensitive, these same catchments havemore subsurface
water storage in late summer available for extraction and therefore may bemore vulnerable to increased eva-
porative demand (Jepsen et al., 2016; Tague, 2009). Future work should aim to isolate the mechanisms that
control the seasonal partitioning of precipitation into evapotranspiration versus streamflow during periods of
increased evaporative demand, for example, using modeling experiments (Foster et al., 2016) or during
extreme events such as the recent California drought (Bales et al., 2018).

5.2. Summer Low-Flow Elasticity in Rain- Versus Snow-Dominated Catchments

We find that summer low-flow elasticity to the annual maximum SWE (SWEMAX) ranges from 0.13% to 1.18%
(median 0.43%), similar to values reported for the Sierra Nevada mountains and the Swiss Alps (Godsey
et al., 2014; Jenicek et al., 2016, 2018). The magnitude of low-flow elasticity to SWEMAX depends on the cor-
relation between low flows and SWEMAX. Warmer, lower elevation catchments with low SWE/P ratios have
lower correlation and consequently lower elasticity. Whereas this suggests lower sensitivity, catchments
dominated by low- and middle-elevation snow at risk are likely to experience the largest near-term declines
in SWEMAX in a warming climate (Nolin & Daly, 2006; Tennant et al., 2015). Low-flow vulnerability to changes
in SWEMAX is therefore likely to follow the region- and elevation-specific climate sensitivity of catchment
snowpack, whereas the differences between low-flow elasticities in rain- versus snow-dominated catch-
ments we document demonstrate the diminishing influence (and predictive utility) of SWEMAX on summer
low flows if catchments shift from snow- to rain-dominated conditions (Jenicek et al., 2018).

Low-flow elasticity to SWEMAX is also clearly not independent of low-flow elasticity to PPT. To explore this
interdependence indirectly, we compared low-flow elasticity to PPT and PET in snow- versus rain-dominated
catchments. Applying this space for time transformation, we infer that rain-dominated catchments are more
sensitive (have larger elasticity) to PPT and PET than snow-dominated catchments, on average. In the primar-
ily energy-limited Pacific Northwest, larger SWE/P ratios are associated with reduced low-flow elasticity to PET
but not PPT. In the primarily water-limited California mountains, larger SWE/P ratios are associated with
reduced low-flow elasticity to both PET and PPT. This finding supports the notion that, in addition to provid-
ing an important moisture source (particularly in water-limited systems), snow cover increases runoff produc-
tion by reducing atmospheric moisture losses (Bosson et al., 2012; Foster et al., 2016), shedding some light on
the importance of SWE independently of PPT and its role in controlling seasonal impacts to low flows in a
warming climate. Moreover, these findings suggest that a shift from snow- to rain-dominated conditions
may lead to lower low flows and enhanced variability in low flows in response to a decline in PPT or an
increase in PET than expected in the absence of declining SWE. Teasing out the underlying causal factors
of these nonlinear effects should continue to receive attention (e.g., Barnhart et al., 2016).
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5.3. Summer Low-Flow Elasticity in Slow- Versus Fast-Draining Catchments

Absolute values of summer low-flow elasticity to SWEMAX, PPT, and PET are lower in slow-draining catchments
than in fast-draining catchments, highlighting the importance of catchment physiographic factors such as
soil and rock porosity and permeability and catchment size, shape, and slope in controlling summer stream-
flow and its response to climate variability (Cummings & Eibert, 2018; Jepsen et al., 2016; Klos et al., 2014;
Lovill et al., 2018; Tague & Grant, 2009). As with larger SWE/P ratios, the slow release of catchment water sto-
rage reduces the interannual variability of low flows relative to climatic variability in both semiarid and humid
catchments, but the mediating effect of drainage rates is stronger than the SWE/P ratio effect. On average,
elasticity to PPT and PET is lower by 0.32% and 1.3%, respectively, in slow-draining catchments than fast-
draining catchments, compared to 0.15% and 0.47% respective reductions in snow-dominated catchments
versus rain-dominated catchments.

We also find that storage coefficients are negatively correlated with SWEMAX. In addition to catchment geol-
ogy, storage coefficients integrate effects of shallow subsurface hydrology and root-zone soil moisture
dynamics on baseflow recession (Bart & Tague, 2017). Smaller snowpacks that melt earlier have slower snow-
melt rates (Musselman et al., 2017), which are hypothesized to decrease runoff generation owing to less effi-
cient snowmelt infiltration into subsurface storage below the root-zone that sustains dry season runoff
(Barnhart et al., 2016). Larger, faster-melting snowpacks may therefore lead to slower baseflow recessions
owing to more efficient snowmelt infiltration into subsurface storage and/or less atmospheric moisture loss.

Although these results suggest that slow-draining catchments are the least sensitive to climatic variability,
elasticities represent the percent change in QMIN with respect to unit percent changes in climatic forcing.
Absolute declines in QMIN may be larger in slow-draining catchments where mean summer flows are large
relative to fast-draining catchments (Safeeq et al., 2013; Tague et al., 2008; Tague & Grant, 2009). Similarly,
large percent changes in QMIN in fast-draining catchments may be small in absolute terms relative to historic
variability. In these catchments, water management infrastructure and decision makingmay have adapted to
historically large interannual streamflow variability and may be less vulnerable to large percent changes in
low flows (Tague & Grant, 2009). Future work should identify the implications of relative versus absolute
changes in summer streamflow for the range of stakeholder interests in the western United States (Tague
et al., 2008) and assess whether hydrologic models in use today capture the complex interactions between
snowmelt, subsurface hydrology, and seasonal streamflow generation that explain the elasticity patterns
identified here (Jepsen et al., 2016; Markovich et al., 2016; Maxwell & Condon, 2016; Tague et al., 2013).

5.4. Limitations of This Study and Future Research Needs

Our results pertain to the magnitude of low flows and not their timing or duration. Our results suggest that
low-flow elasticity to SWEMAX is lower than to PPT and PET, but reductions in SWEMAX could dominate impacts
to aquatic habitats that depend on the consistency and temperature-mediating effect of snowmelt recharge
(Arismendi et al., 2013; Mantua et al., 2010). We use a bivariate parametric estimator of elasticity that assumes
that SWEMAX, PPT, and PET are independent. Multivariate regression may provide more robust estimates of
annual and low-flow elasticity to multiple sources of climatic variability (Kormos et al., 2016; Tsai, 2017). We
do not address persistence (memory) in the annual time series of low flows and climate variables, nor do
we address dependence of elasticity on hydrologic memory (Godsey et al., 2014; Jefferson et al., 2008).
The maritime western United States is characterized by prolonged multiyear drought followed by sudden
recovery (Dettinger, 2013), which may become more extreme in a future climate (Francis & Vavrus, 2012).
Understanding the role of antecedent conditions and the degree to which changes in precipitation or eva-
porative demand will exacerbate or mitigate low-flow vulnerability to changes in snow accumulation and
melt should remain imperatives (Bales et al., 2018; Luce et al., 2013).

6. Conclusions

Three clear patterns emerge from our analysis of summer low-flow elasticity to climatic variability in the mar-
itime western U.S. mountains:

1. Low-flow elasticity to summer evaporative demand is 4–5 times larger on an absolute basis than elasticity
to winter precipitation and annual maximum SWE. In addition, low-flow elasticity to annual maximum
SWE, winter precipitation, and summer evaporative demand is larger and more variable in the semiarid
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California mountains than in the humid Pacific Northwest. These findings both support the notion that
small changes in evaporative demand have the potential to drive large changes in low flows and their
elasticity to climatic variability in the western United States if low flows maintain their historic relationship
to evaporative demand.

2. Low-flow elasticity to winter precipitation and summer evaporative demand is lower on an absolute basis
for snow-dominated catchments than for rain-dominated catchments. In the humid Pacific Northwest,
snow reduces low-flow elasticity to summer evaporative demand but not to winter precipitation, whereas
in the semiarid California mountains, snow reduces low-flow elasticity to both winter precipitation and
summer evaporative demand. In the event of continued reductions of annual maximum SWE and earlier
snowmelt timing across the western United States, these results suggest that low flows in snow-
dominated catchments are likely to become lower, more variable, and less predictable in the future.

3. Low-flow elasticity to annual maximum SWE, winter precipitation, and summer evaporative demand is
markedly lower for slow-draining catchments where the baseflow recession process is strongly controlled
by seasonal changes in groundwater storage. This effect is found for all variables examined, is indepen-
dent of latitude, and is stronger than the effect of rain versus snow precipitation regime. Low-flow varia-
bility is smallest in slow-draining catchments, and the proportional response of low flows to climate
variability and change is likely to be smallest in slow-draining catchments.

Our results provide broad insight into the factors that control spatial variability in the climatic sensitivity of
low flows in the maritime western U.S. mountains. In general, catchments in the semiarid California moun-
tains are highly sensitive to climatic variability, and this sensitivity is lower where SWE is a larger portion of
annual precipitation. Catchments in the humid Pacific Northwest are less sensitive to climatic variability,
but as with California, sensitivity is lower where annual maximum SWE is a larger portion of annual precipita-
tion. In both regions, low flows are more sensitive to summer evaporative demand than annual maximum
SWE or winter precipitation. However, this should be balanced against the larger expected near-term
changes in future SWE. If precipitation magnitude and evapotranspiration do not change substantially,
low- and middle-elevation snow-dominated catchments with catchment geology that favors fast baseflow
recession are likely to experience the largest near-term percent declines in low flows in a warming climate.
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Erratum

In the originally published version of this article, Table S1, which is a table listing data published in the article,
was missing from the supporting information. The file has since been added and this version may be
considered the authoritative version of record.
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